Duality results for generalized vector variational inequalities with set-valued maps
https://doi.org/10.1007/s10957-007-9342-6Publisher, magazine: ,
Publication year: 2008
Lưu Trích dẫn Chia sẻAbstract
In this paper, we introduce new dual problems of generalized vector variational inequality problems with set-valued maps and we discuss a link between the solution sets of the primal and dual problems. The notion of solutions in each of these problems is introduced via the concepts of efficiency, weak efficiency or Benson proper efficiency in vector optimization. We provide also examples showing that some earlier duality results for vector variational inequality may not be true.
Tags: Vector variational inequalities, Set-valued maps, Duality, Conjugate maps, Biconjugate maps
Các bài viết liên quan đến tác giả Phạm Hữu Sách
Efficiency and generalised convexity in vector optimisation problems
Hartley Proper Efficiency in Multifunction Optimization
Infine functions, nonsmooth alternative theorems and vector optimization problems.
New generalized convexity notion for set-valued maps and application to vector optimization
Characterizations of Hartley proper efficiency in nonconvex vector optimization
Reachability for discrete-time dynamical set-valued systems depending on a parameter
Characterization of scalar quasiconvexity and convexity of locally Lipschitz vector-valued maps
Generalized invexity and duality theories with multifunctions