Rings characterized by cyclic modules
https://doi.org/10.1017/S0017089500007801Publisher, magazine: ,
Publication year: 1989
Lưu Trích dẫn Chia sẻAbstract
A ring R is called right PCI if every proper cyclic right R-module is injective, i.e. if C is a cyclic right R-module then CR ≅ RR or CR is injective. By [2] and [3], if R is a non-artinian right PCI ring then R is a right hereditary right noetherian simple domain. Such a domain is called a right PCI domain. The existence of right PCI domains is guaranteed by an example given in [2]. As generalizations of right PCI rings, several classes of rings have been introduced and investigated, for example right CDPI rings, right CPOI rings (see [8], [6]). In Section 2 we define right PCS, right CPOS and right CPS rings and study the relationship between all these rings.
Tags: None
Các bài viết liên quan đến tác giả Đinh Văn Huỳnh
Some remarks on CS modules and SI rings
On the symmetry of the Goldie and CS conditions for prime rings
When cyclic singular modules over a simple ring are injective
On some classes of Artinian rings
The symmetry of the CS condition on one-sided ideals in a prime ring
Characterizing rings by a direct decomposition property of their modules
Some results on self-injective rings and $\Sigma$-CS rings