Stability of solution mappings for parametric bilevel vector equilibrium problems
https://doi.org/10.1007/s40314-016-0411-zPublisher, magazine: ,
Publication year: 2018
Lưu Trích dẫn Chia sẻAbstract
In this paper, we first revisit the parametric bilevel vector equilibrium problems in Hausdorff topological vector spaces. Then we study the stability conditions such as (Hausdorff) upper semicontinuity, (Hausdorff) lower semicontinuity, outer-continuity and outer-openness of solutions for such problems. Many examples are provided to illustrate the essentialness of the imposed assumptions. For the applications, we obtain the stability results for the parametric vector variational inequality problems with equilibrium constraints and parametric vector optimization problems with equilibrium constraints.
Tags: bilevel vector equilibrium problem; variational inequality with equilibrium constraints; optimization problems with equilibrium constraints; upper (lower) semicontinuity; outer-continuity; outer-openness
Các bài viết liên quan đến tác giả Lâm Quốc Anh
Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems
On the stability of the solution sets of general multivalued vector quasiequilibrium problems
Existence conditions in symmetric multivalued vector quasiequilibrium problems
On the Holder continuity of solutions to parametric multivalued vector equilibrium problems
Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems
Continuity of solution maps of parametric quasiequilibrium problems