Strong duality with proper efficiency in multiobjective optimization involing nonconvex st-valued maps
https://doi.org/10.1080/01630560902905677Publisher, magazine: ,
Publication year: 2009
Lưu Trích dẫn Chia sẻAbstract
In this paper, we consider some dual problems of a primal multiobjective problem involving nonconvex set-valued maps. For each dual problem, we give conditions under which strong duality between the primal and dual problems holds in the sense that, starting from a Benson properly efficient solution of the primal problem, we can construct a Benson properly efficient solution of the dual problem such that the corresponding objective values of both problems are equal. The notion of generalized convexity of set-valued maps we use in this paper is that of near-subconvexlikeness.
Tags: Near-subconvexlikeness, Proper efficiency, Set-valued map, Strong duality, Vector optimization
Các bài viết liên quan đến tác giả Phạm Hữu Sách
Efficiency and generalised convexity in vector optimisation problems
Hartley Proper Efficiency in Multifunction Optimization
Infine functions, nonsmooth alternative theorems and vector optimization problems.
New generalized convexity notion for set-valued maps and application to vector optimization
Characterizations of Hartley proper efficiency in nonconvex vector optimization
Reachability for discrete-time dynamical set-valued systems depending on a parameter
Characterization of scalar quasiconvexity and convexity of locally Lipschitz vector-valued maps
Generalized invexity and duality theories with multifunctions