Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems
https://doi.org/10.1016/j.jmaa.2007.02.013Publisher, magazine: ,
Publication year: 2007
Lưu Trích dẫn Chia sẻAbstract
The Kuhn-Tucker sufficiency theorem states that a feasible point that satisfies the Kuhn-Tucker conditions is a global minimizer for a convex programming problem for which a local minimizer is global. In this paper, we present new Kuhn-Tucker sufficiency conditions for possibly multi-extremal nonconvex mathematical programming problems which may have many local minimizers that are not global. We derive the sufficiency conditions by first constructing weighted sum of square underestimators of the objective function and then by characterizing the global optimality of the underestimators. As a consequence, we derive easily verifiable Kuhn-Tucker sufficient conditions for general quadratic programming problems with equality and inequality constraints. Numerical examples are given to illustrate the significance of our criteria for multi-extremal problems.
Tags: smooth nonlinear programming problems; global optimization; sufficient optimality conditions; box constraints; Kuhn-Tucker conditions
Các bài viết liên quan đến tác giả Jeya Jeyakumar
Global minimization of difference of quadratic and convex functions over box or binary constraints
Convex composite non-Lipschitz programming
Sharp variational conditions for convex composite nonsmooth functions
An open mapping theorem using unbounded generalized Jacobians
Sequential Lagrangian conditions for convex programs with applications to semidefinite programming
Nonsmooth calculus, minimality, and monotonicity of convexificators
Global optimality of quadratic minimization over symmetric polytopes