Global minimization of difference of quadratic and convex functions over box or binary constraints
https://doi.org/10.1007/s11590-007-0053-6Publisher, magazine: ,
Publication year: 2008
Lưu Trích dẫn Chia sẻAbstract
We present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers in the case of a weighted sum of squares minimization problems. We obtain sufficient conditions for global optimality by first constructing quadratic underestimators and then by characterizing global minimizers of the underestimators. We also derive global optimality conditions for the minimization of the difference of quadratic and convex functions over binary constraints. We discuss several numerical examples to illustrate the significance of the optimality conditions.
Tags: quadratic non-convex minimization; concave minimization; necessary optimality conditions; sufficient conditions; box constraints; 0/1 constraints
Các bài viết liên quan đến tác giả Jeya Jeyakumar
Global minimization of difference of quadratic and convex functions over box or binary constraints
Convex composite non-Lipschitz programming
Sharp variational conditions for convex composite nonsmooth functions
An open mapping theorem using unbounded generalized Jacobians
Sequential Lagrangian conditions for convex programs with applications to semidefinite programming
Nonsmooth calculus, minimality, and monotonicity of convexificators
Global optimality of quadratic minimization over symmetric polytopes