On Reduced-Order Linear Functional Interval Observers for Nonlinear Uncertain Time-Delay Systems with External Unknown Disturbances
https://doi.org/10.1007/s00034-018-0951-0Publisher, magazine: ,
Publication year: 2019
Lưu Trích dẫn Chia sẻAbstract
In this paper, we consider the problem of designing reduced-order linear functional interval observers for nonlinear uncertain time-delay systems with external unknown disturbances. Given bounds on the uncertainties, we design two reduced-order linear functional state observers in order to compute two estimates, an upper one and a lower one, which bound the unmeasured linear functions of state variables. Conditions for the existence of a pair of reduced-order linear functional observers are presented, and they are translated into a linear programming problem in which the observers’ matrices can be effectively computed. Finally, the effectiveness of the proposed design method is supported by four examples and simulation results.
Tags: Reduced-order observers; Interval observers; Uncertain models; Biological systems.
Các bài viết liên quan đến tác giả Mai Viết Thuận
Exponential stabilization of time-varying delay systems with non-linear perturbations
Exponential stabilization of non-autonomous delayed neural networks via Riccati equations
New criteria for stability and stabilization of neural networks with mixed time-varying delays
Optimal guaranteed cost control of linear systems with mixed time-varying delayed state and control
Observer-based controller design of time-delay systems with an interval time-varying delay
Finite‐Time Guaranteed Cost Control of Caputo Fractional‐Order Neural Networks
New Results on Robust Finite-Time Passivity for Fractional-Order Neural Networks with Uncertainties