Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces
https://doi.org/10.1016/j.amc.2008.02.041Publisher, magazine: ,
Publication year: 2008
Lưu Trích dẫn Chia sẻAbstract
\[ A_i\mapsto A_i+ \sum^N_{j=1} \delta_{ij} A_{ij},\quad i\in\overline K, \] where \(D_{ij}\in{\mathcal L}(U_{ij}, X)\), \(E_{ij}\in{\mathcal L}(X, Y_{ij})\) and \(A_{ij}\in{\mathcal L}(X)\), \(i\in\overline K\), \(j\in\overline N= \{1,2,\dots, N\}\) are given operators defining the scaling and structure of the parameter uncertainties, and \(A_{ij}\in{\mathcal L}(Y_{ij}, U_{ij})\) and \(\delta_{ij}\) are, respectively, unknown operators and scalar representing parameter uncertainties.
Tags: positive difference system; affine parameter perturbation; stability radius; delay difference systems
Các bài viết liên quan đến tác giả Bùi Thế Anh
Robust stability of Metzler operator and delay equation in $L\sp p([-h,0];X)$
Stability radii of positive higher order difference system in infinite dimensional spaces
Stability radii of positive linear systems under fractional perturbations
Robust stability of Metzler operators under parameter perturbations
Stability radii of positive linear time-delay systems under fractional perturbations
A Perron-Frobenius theorem for positive polynomial operators in Banach lattices