Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source
https://doi.org/10.1515/jiip-2018-0040Publisher, magazine: ,
Publication year: 2020
Lưu Trích dẫn Chia sẻAbstract
In this paper, we consider an inverse problem for a time-fractional diffusion equation with a nonlinear source. We prove that the considered problem is ill-posed, i.e., the solution does not depend continuously on the data. The problem is ill-posed in the sense of Hadamard. Under some weak a priori assumptions on the sought solution, we propose a new regularization method for stabilizing the ill-posed problem. We also provide a numerical example to illustrate our results.
Tags: Ill-posed; regularization method; Caputo’s fractional derivatives; Fourier transform
Các bài viết liên quan đến tác giả Nguyễn Huy Tuấn
A nonhomogeneous backward heat problem: regularization and error estimates
A nonlinear case of the 1-D backward heat problem: regularization and error estimate
Regularization and error estimates for nonhomogeneous backward heat problems
Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems
An approximate solution for a nonlinear biharmonic equation with discrete random data
Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source
Regularization of a terminal value problem for time fractional diffusion equation
Approximation of mild solutions of a semilinear fractional differential equation with random noise