Nonlinear Kirchhoff-Carrier wave equation in a unit membrane with mixed homogeneous boundary conditions

Authors: Nguyễn Thành Long,

---

Publisher, magazine: ,

Publication year: 2004

  Lưu        Trích dẫn         Chia sẻ

Abstract

We consider the nonlinear wave equation problem \[ u_{tt}-B\big(\|u\|_0^2,\|u_{r}\|_0^2\big)(u_{rr}+\tfrac{1}{r}u_{r}) =f(r,t,u,u_{r}),\quad 0<r<1, 0<t<T, \] \[ \big|\lim_{r\to 0^+}\sqrt{r}u_{r}(r,t)\big|<\infty, \] \[ u_{r}(1,t)+hu(1,t)=0, \] \[ u(r,0)=\widetilde{u}_0(r), u_{t}(r,0)=\widetilde{u}_1(r). \] To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev space using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on \(u_{r}\) and a coefficient function \(B\) of the form \(B=B(\|u\|_0^2)=b_0+\|u\|_0^2\) with \(b_0>0\).

Tags: local solution; weak solution; compactness arguments