Regularity results for fractional diffusion equations involving fractional derivative with Mittag–Leffler kernel
https://doi.org/10.1002/mma.6459Publisher, magazine: ,
Publication year: 2020
Lưu Trích dẫn Chia sẻAbstract
This paper studies partial differential equation model with the new general fractional derivatives involving the kernels of the extended Mittag–Leffler type functions. An initial boundary value problem for the anomalous diffusion of fractional order is analyzed and considered. The fractional derivative with Mittag–Leffler kernel or also called Atangana and Baleanu fractional derivative in time is taken in the Caputo sense. We obtain results on the existence, uniqueness, and regularity of the solution.
Tags: Atangana–Baleanu operator, existence, fractional diffusion equation, initial value problem, regularity
Các bài viết liên quan đến tác giả Nguyễn Huy Tuấn
A nonhomogeneous backward heat problem: regularization and error estimates
A nonlinear case of the 1-D backward heat problem: regularization and error estimate
Regularization and error estimates for nonhomogeneous backward heat problems
Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems
An approximate solution for a nonlinear biharmonic equation with discrete random data
Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source
Regularization of a terminal value problem for time fractional diffusion equation
Approximation of mild solutions of a semilinear fractional differential equation with random noise