On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
https://doi.org/10.3934/dcdsb.2020190Publisher, magazine: ,
Publication year: 2020
Lưu Trích dẫn Chia sẻAbstract
In this paper, we consider a microscopic semilinear elliptic equation posed in periodically perforated domains and associated with the Fourier-type condition on internal micro-surfaces. The first contribution of this work is the construction of a reliable linearization scheme that allows us, by a suitable choice of scaling arguments and stabilization constants, to prove the weak solvability of the microscopic model. Asymptotic behaviors of the microscopic solution with respect to the microscale parameter are thoroughly investigated in the second theme, based upon several cases of scaling. In particular, the variable scaling illuminates the trivial and non-trivial limits at the macroscale, confirmed by certain rates of convergence. Relying on classical results for homogenization of multiscale elliptic problems, we design a modified two-scale asymptotic expansion to derive the corresponding macroscopic equation, when the scaling choices are compatible. Moreover, we prove the high-order corrector estimates for the homogenization limit in the energy space H 1 , using a large amount of energy-like estimates. A numerical example is provided to corroborate the asymptotic analysis.
Tags: Pore-scale model, nonlinear elliptic equations, perforated domains, linearization, asymptotic analysis, corrector estimates.
Các bài viết liên quan đến tác giả Thieu Thi Kim Thoa (Thoa Thieu)