Application of the cut-off projection to solve a backward heat conduction problem in a two-slab composite system.
https://doi.org/10.1080/17415977.2018.1470623Publisher, magazine: ,
Publication year: 2019
Lưu Trích dẫn Chia sẻAbstract
The main goal of this paper is applying the cut-off projection for solving one-dimensional backward heat conduction problem in a two-slab system with a perfect contact. In a constructive manner, we commence by demonstrating the Fourier-based solution that contains the drastic growth due to the high-frequency nature of the Fourier series. Such instability leads to the need of studying the projection method where the cut-off approach is derived consistently. In the theoretical framework, the first two objectives are to construct the regularized problem and prove its stability for each noise level. Our second interest is estimating the error in L2-norm. Another supplementary objective is computing the eigen-elements. All in all, this paper can be considered as a preliminary attempt to solve the heating/cooling of a two-slab composite system backward in time. Several numerical tests are provided to corroborate the qualitative analysis.
Tags: Two-slab system, cut-off projection, backward heat conduction problem, ill-posedness, regularized solution, error estimates
Các bài viết liên quan đến tác giả Nguyễn Huy Tuấn
A nonhomogeneous backward heat problem: regularization and error estimates
A nonlinear case of the 1-D backward heat problem: regularization and error estimate
Regularization and error estimates for nonhomogeneous backward heat problems
Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems
An approximate solution for a nonlinear biharmonic equation with discrete random data
Regularization of a sideways problem for a time-fractional diffusion equation with nonlinear source
Regularization of a terminal value problem for time fractional diffusion equation
Approximation of mild solutions of a semilinear fractional differential equation with random noise